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Abstract
Contrary to i-vectors, speaker embeddings such as x-vectors are
incapable of leveraging unlabelled utterances, due to the classi-
fication loss over training speakers. In this paper, we explore
an alternative training strategy to enable the use of unlabelled
utterances in training. We propose to train speaker embedding
extractors via reconstructing the frames of a target speech seg-
ment, given the inferred embedding of another speech segment
of the same utterance. We do this by attaching to the standard
speaker embedding extractor a decoder network, which we feed
not merely with the speaker embedding, but also with the esti-
mated phone sequence of the target frame sequence.

The reconstruction loss can be used either as a single ob-
jective, or be combined with the standard speaker classification
loss. In the latter case, it acts as a regularizer, encouraging gen-
eralizability to speakers unseen during training. In all cases, the
proposed architectures are trained from scratch and in an end-
to-end fashion. We demonstrate the benefits from the proposed
approach on the VoxCeleb and Speakers in the Wild Databases,
and we report notable improvements over the baseline.
Index Terms: speaker recognition, self-supervised learning,
deep learning

1. Introduction
In recent years, deep learning classifiers and representations
have surpassed the performance of shallow and fully probabilis-
tic counterparts in several tasks of speech recognition and com-
puter vision, often by a large margin. A key ingredient towards
this success has been the availability of large annotated datasets,
which enabled very deep architectures to be trained using super-
vised learning approaches. The availability of large in-domain
corpora played a major role in building robust speaker recogni-
tion models, too. The success of Joint Factor Analysis and i-
vectors can largely be attributed to such corpora, which enabled
modeling correlations between acoustic units [1, 2]. More re-
cently, deep learning architectures outperformed such methods
in most of the speaker recognition benchmarks [3].
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On the other hand, these architectures require the datasets
to be labelled with respect to speaker, which was not the case
with i-vectors. As an unsupervised model, an i-vector extractor
does not require utterances with associated speaker labels for
training [2]. Labelled utterances are needed merely for training
the backend classifier (typically a PLDA) which requires much
less data, thanks to its relatively small number of trainable pa-
rameters.

In this paper, we introduce a training architecture capable
of learning speaker embeddings with only few or no speaker la-
bels. The structure we add to the standard speaker embedding
network is a decoder network, which learns how to reconstruct
speech segments in the frame-level, using a mean-squared error
loss. A key idea of the method is the conditioning of the decoder
not merely on the embedding extracted by the encoder (i.e.,
the embedding extractor), but also on the phonetic sequence of
the decoding speech segment, as estimated by an independently
trained Automatic Speech Recognition (ASR) model. Such a
conditioning allows for a decoding loss over speech frames to
apply for learning in an end-to-end fashion using standard back-
propagation. It moreover enables learning speaker embeddings
that capture only the idiosyncratic characteristics of a speaker,
rather than irrelevant information about the phonetic sequence.
The latter property is further improved by extracting two differ-
ent segments from an utterance: the first for feeding the encoder
and extracting the embedding, and the second one for using it
as target for the decoder, together with its associated phone se-
quence.

We show that the proposed decoder loss can be combined
with the standard x-vector architecture and loss (i.e., cross-
entropy over training speakers) yielding significant improve-
ment. Finally, we consider a semi-supervised learning scenario,
where only a small fraction of the training utterances contain
speaker labels and we show how the proposed architecture can
leverage both labelled and unlabelled utterances. All our ex-
periments are conducted on VoxCeleb[4] and Speakers In The
Wild[5] benchmarks.

2. Related work
2.1. Speaker recognition using autoencoders

There have been several attempts in speaker recognition to make
use of reconstruction losses. Most of them are based on (plain
or variational) autoencoders, either in an unsupervised way or
using speaker labels [6, 7, 8]. Other such approaches aim at
reducing the phonetic variability of short segments by learning
a mapping from short segments to the whole utterance. The



main weakness of these methods is the fact that they operate
over fixed, utterance-level representations, typically i-vectors
[9]. Our approach of conditioning the reconstruction on the
estimated phone sequence of each segment can be employed,
enabling such approaches to be revisited in an end-to-end fash-
ion. Other recent approaches aiming at enhancing the x-vector
architecture with adversarial loss are also relevant, since they
propose joint training of the network with auxiliary losses and
structures which are removed in runtime [10, 11, 12].

2.2. Speech synthesis, recognition, and factorization

Recently, speaker embeddings have been deployed in text-to-
speech (TTS) and voice conversion [13, 14, 15]. The embed-
dings are typically extracted using a pretrained network (e.g., a
d- or x-vector extractor), which may be fine-tuned to the task
[14]. Conditioning the decoder on speaker embeddings (to-
gether with the text of the target utterance) is crucial for training
multispeaker TTS systems and producing synthetic speech for
target speakers unseen during training. Although our method
shares certain similarities with this family of TTS methods (es-
pecially in the decoder), our goals are different. Rather than
employing a pretrained speaker recognition model to extract
embeddings, we demonstrate that speaker-discriminative train-
ing is feasible using merely a reconstruction loss over speech
segments and training the overall network jointly. Finally, a re-
cently introduced ASR approach for integrating ASR and TTS
into a single cycle during training has also certain similarities
with our method ([16]), and the same holds for the deep factor-
ization method for speech proposed in [17].

2.3. Self-supervised learning

The approach of extracting speaker embeddings via reconstruct-
ing different parts of a sequence can be considered as an appli-
cation of self-supervised learning, where a network is trained
with a loss on a pretext task, without the need for human an-
notation. Models using self-supervised learning for initializa-
tion are now state-of-the-art in several domains and tasks, such
as action recognition, reinforcement learning, and natural lan-
guage understanding [18, 19, 20, 21, 22].

3. The proposed architecture
In this section we describe the network used in training and we
provide rationale for certain algorithmic choices. The architec-
ture is depicted in Figure 1. Architectural details are given in
Section 4.2.

3.1. Notation

We denote by Y = {yt}Tt=1 the frame sequence of an ut-
terance, and the corresponding estimated phones sequence by
p̂ = {p̂t}Tt=1. We also denote an associated version of the same
utterance by Ỹ = {ỹt}Tt=1, where tilde indicates corruption by
noise, reverberation, or another data augmentation scheme. The
encoder consumes randomly extracted segments from Ỹ, de-
noted by Ỹe = {ỹt}te+τe−1

t=te
, where τe is randomly sampled in

[200, 400]. Let also Yd = {yt}td+τd−1
t=td

be another segment of
the same utterance (without data augmentation), and let p̂d de-
note its corresponding estimated phone sequence. The encoder
part of the network (i.e., the embedding extractor) is denoted by

xe = fe(Ỹe;We), (1)

and it is a function parametrized by We.
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Figure 1: Block-diagram of the architecture. Note that only the
blue part of the network is required in runtime.

3.2. Purely self-supervised training

We train the network using a decoder, which is a network im-
plementing the following function

Ŷd = fd(xe, p̂d;Wd). (2)

The decoder is parametrized by Wd and receives as input the
embedding xe and the estimates phone sequence p̂d. Note that
the embedding xe and target frames Yd correspond in general
to different segments of the same utterance. The architecture is
trained using mean-squared error (MSE) loss, i.e.

LMSE(Yd, Ŷd) =
1

τd

td+τd−1∑
t=td

‖yt − ŷt‖2 . (3)

The above equations show that the encoder and decoder can be
trained jointly using standard backpropagation.

3.3. Combining self-supervision with cross-entropy over
speakers

In case the utterance Y has a speaker label s we may com-
bine the decoding loss with the standard cross-entropy loss over
speakers. The speaker classifier estimates the posterior distri-
bution over the set of training speakers, i.e.,

P (s|xe,Wc) = fc(xe;Wc), (4)

it is parametrized by Wc and has a softmax as final layer. The
cross-entropy (CE) loss LCE(s, P (s|xe,Wc)) can be added to
the decoding loss and the overall network can be trained jointly,
i.e.

Ljoint(·) = δLCE(·) + αLMSE(·), (5)

where δ = {0, 1} indicates whether the particular utterance has
a speaker label, and α ≥ 0 is a scalar for balancing the two
losses.



3.4. Discussion

3.4.1. Encoding and decoding segments

The rationale for defining the encoding and decoding sequences
as different segments of the same utterance is to encourage the
encoder to learn embeddings that encode information about the
way a speaker pronounces acoustic events unseen in the encod-
ing sequence. Note also that we keep the decoding target se-
quence clean (i.e., without augmentation). We do so for encour-
aging the encoder to learn how to denoise speech sequences, an
approach similar to denoising autoencoders [23].

3.4.2. Representation of the phonetic sequence

For passing the phonetic sequence to the decoder, we choose to
define estimated phones as phonetic units, in the form of one-
hot vectors. Clearly, there are several other options, such as
bottleneck features, senones or characters.

One of the reasons why we did not use bottleneck features
is that they inevitably carry speaker-discriminative information,
as experience shows (recall that speaker recognition is feasible
with plain bottleneck features [24]). Therefore, passing bot-
tleneck features to the decoder could create information leak-
age, preventing the embedding from capturing useful speaker-
discriminative information. Another drawback of bottlenecks
is that they would tie the remaining network to a specific bot-
tleneck extractor. Contrarily, symbolic entities such as phones
allow for different ASR models to be used for estimating p̂d or
even for using the ground truth phones, when available.

On the other hand, senones would result in a much larger
and harder to train decoding network, while the senone pos-
teriors would be much less spiky compared to phones, and
hence far from resembling one-hot vectors. Furthermore, pass-
ing senones to the decoder seems unnecessary; the decoder can
recover the context-dependence of each phone since it is condi-
tioned on the overall phone sequence p̂d.

Finally, using characters would require additional complex-
ity to align the two sequences, such as an attention mechanism
employed in TTS approaches [14]. For these reasons, we con-
sider phones in the form of one-hot vectors as the appropriate
representation and level of granularity for this task and setup.

3.4.3. Semi and weakly supervised learning

The proposed architecture defines a principled way of utiliz-
ing unlabelled data in x-vector training. There are other losses
for supervised training with which one may combine it, such
as the triplet loss [25, 26, 27]. Note that both cross-entropy
and triplet losses cannot leverage unlabelled utterances (e.g., by
splitting the same utterances into multiple segments), unless one
assumes that each utterance in the training set is coming from a
different speaker (which is typically not the case). On the other
hand, our self-supervised method requires only the knowledge
that two segments belong to the same speakers, while it can
be extended to encode and decode on segments coming from
different utterances of the same speaker. This would make it
suitable also for certain weakly supervised learning settings,
where labels indicate merely that two or more utterances are
coming from the same speaker, without excluding the possi-
bility that other utterances may belong to the same speaker as
well. In such cases, a training criterion that does not require
exclusive labels (cross-entropy loss) or negative pairwise labels
(triplet loss) seems to be the only principled method for learning
speaker representations.

4. Experiments
4.1. VoxCeleb and SITW datasets

We evaluate the systems on the Speakers in the wild (SITW)
[5] core-core eval set and the VoxCeleb 1 test set [4]. We use
the SITW core-core development set for tuning various hyper-
paramters of the systems. For preparing the data, we use the
Kaldi [28] SITW recipe (sitw/v2). This recipe uses Vox-
Celeb 1 and 2 [29] for training data. We use the recipe as is,
except that we do not include VoxCeleb 1 test set in the training
set. The number of speakers in the training set is 7146 and the
number of utterances is 2081192 including augmentations. For
semisupervised experiments, we randomly selected 1000 speak-
ers, having in total 227998 utterances.

4.2. Implementation and training details

4.2.1. Implementation and decoder

We use the TensorFlow toolkit [30] for implementing our sys-
tems. As baseline, we use the standard Kaldi x-vector architec-
ture [31], i.e., five TDNN layers with ReLU activation functions
followed by batch normalization, followed by a pooling layer
that accumulates mean and standard deviation, followed by two
feed-forward layers with ReLU and batch normalization, and
finally a softmax layer for classifying speakers. Different from
Kaldi, we apply a global normalization on the input features and
batch normalization also after the pooling layer. As discussed
above, the loss is CE over training speakers.

The reconstruction network (i.e., the decoder) consists of
five layers that operates framewise. Its input are the phone la-
bels represented as one-hot vector and its output predicts the
30-dimensional feature vectors. The input layer is either (a) a
feed-forward layer or (b) a TDNN layer with a context of three
frames on each side (denoted by ctx). The other layers are feed-
forward layers with an output dimension 166 (i.e., same as the
number of phone labels). All layers except the last one are fol-
lowed by ReLU and batch normalization. The embedding is
appended to the input of each layer. The loss for the reconstruc-
tion is the MSE between the real and predicted features.

In the experiments, we use minibatches containing 150 seg-
ments. The lengths of the segments are 2-4s. We use the ADAM
optimizer [32], starting with a learning rate of 1e-2 which we
then halve whenever the loss on a validation set does not im-
prove for 32 epochs, where an epoch is defined to be 400 mini-
batches. In the semisupervised experiment, each batch contains
150 labelled segments and 150 unlabelled segments and only
the labelled segments will be used to calculate the speaker clas-
sification loss.

4.2.2. The ASR model

The frame-level phone labels are generated using the official
Kaldi [28] Tedlium speech recognition recipe (s5 r3). This
recipe uses a TDNN based acoustic model with i-vector adap-
tation and an RNN based language model. Phone posteriors
are obtained from the lattices using the forward-backward algo-
rithm and then converted to hard labels. There are 39 phones,
each coming in four different versions depending on their posi-
tion in the word, plus a silence (SIL) and noise class (NSN) that
has 5 versions each, resulting in 166 phone classes.

4.2.3. PLDA Backend

We used an identical backend to the one in the Kaldi x-vector
recipe. This backend involves a preprocessing step which first



reduces the x-vector dimension by LDA from 512 to 128, and
then applies a nonstandard variant of length-norm1. The back-
end was implemented in python based on our in-house toolkit
Pytel. For the fully supervised experiments we, as the Kaldi
recipe, use the 200k longest utterances, resulting in 6298 speak-
ers. For the semi-supervised experiments, we use all of these
utterances where the speaker is among the 10000 randomly se-
lected, resulting in 899 speakers and 31785 utterances.

4.3. Experimental Results

4.3.1. Fully labelled training set

The results using the standard training set of VoxCeleb are given
in Table 1.

Table 1: Results with fully supervised training. EER refers to
Equal Error Rate in % and mDCF refers to Minimum Detection
Cost with P(tar) = 0.01. All Nf ≈7k speakers are used in
PLDA training. Baseline refers to the standard x-vector recipe.

SITW VoxCeleb
EER mDCF EER mDCF

Spk, baseline 3.879 0.382 4.088 0.431
Self 5.823 0.540 6.707 0.628
Self, cln 5.685 0.542 6.538 0.612
Self, cln, ctx 4.844 0.485 5.758 0.536
Self, cln, ctx, same 4.760 0.478 6.347 0.580
Spk+Self 3.311 0.362 3.961 0.386
Spk+Self, cln 3.362 0.356 3.881 0.380
Spk+Self, cln, ctx 3.362 0.353 3.759 0.344

The results show that the self-supervised models are capa-
ble of extracting speaker-discriminant embeddings. The use of
clean (cln) decoding utterances yields slightly better results, as
it enforces the encoder to act as a denoiser. Moreover, condi-
tioning the decoding TDNN on a 7-frame phonetic context (ctx)
is clearly beneficial compared to conditioning it merely on the
phone of the target frame.

We also observe that using same segments for encoding
and decoding (same) yields inferior performance on VoxCeleb,
while on SITW their performance is equivalent. A plausible
explanation is that VoxCeleb contains shorter segments com-
pared to SITW. Hence, as encoding and decoding on different
segments encourages the network to learn how to reconstruct
phonetic subsequences unseen in the encoding segments, it is
expected to be more beneficial for short durations.

When the two losses are combined (Spk+Self), the model
clearly outperforms plain x-vector (Spk). In this case, the self-
supervised loss has a regularization effect, constraining the net-
work to learn representations that generalize well to unseen
speakers. Again, the use of context yields superior performance,
although in this case the differences are less significant.

4.3.2. Partly labelled training set

In this set of experiments, we assume that only a fraction of the
training utterances is labelled. Hence, in the results we provide
in Table 2 the PLDA is trained with Nr = 899 VoxCeleb speak-
ers out of Nf ≈ 7K.

In the first two experiments in Table 2 we use standard CE
over speaker loss. We observe the severe degradation when the
number of speakers used to train the x-vector baseline is re-
duced to Nr = 899 (Spk, baseline). For comparison, we report

1https://github.com/kaldi-asr/kaldi/blob/master/src/ivector/plda.cc

Table 2: Results with semi-supervised training. EER refers to
Equal Error Rate in % and mDCF refers to Minimum Detection
Cost with P(tar) = 0.01. In all experiments, the same set ofNr
= 899 randomly selected speakers is used for PLDA training.
Baseline refers to the standard x-vector recipe.

SITW VoxCeleb
EER mDCF EER mDCF

Spk, baseline 6.616 0.593 7.709 0.658
Spk, full set 4.347 0.424 4.804 0.472
Self, cln 6.748 0.615 7.619 0.668
Self, cln, ctx 5.793 0.548 6.644 0.589
Self, cln, ctx, same 5.768 0.548 7.503 0.612
Spk+Self, cln 5.715 0.497 6.972 0.543
Spk+Self, cln, ctx 5.416 0.488 6.315 0.534

the experimental results where the full set of speakers is used
for training the x-vector model (Spk, full set).

The results using only self-supervision with context are
clearly superior to those of pure x-vectors, due to the capac-
ity of self-supervision in leveraging all available utterances dur-
ing training. Moreover, when the two losses are combined, the
results become even better, especially in terms of minDCF. Fi-
nally, we observe again the gains in performance by using dif-
ferent encoding and decoding segments.

5. Conclusions and future work
In this paper, we introduced a new way of training speaker em-
bedding extractors using self-supervision. We showed that a
typical TDNN-based extractor can be trained without speaker
labels, using a decoder network to approximate in the MSE
sense a speech segment of the same utterance. A key idea for
enabling decoding is the conditioning of the decoder on both
the embedding and the phonetic sequence of the decoding seg-
ment, as estimated by an ASR model. Furthermore, we showed
that the proposed loss can be combined with the standard cross-
entropy, yielding notable improvements. Finally, we demon-
strated its effectiveness on semi-supervised learning, i.e., when
only a small fraction of the training set is labelled. Both ad-
ditional networks we introduced (decoder and ASR model) are
only needed during training, leaving the standard x-vector ar-
chitecture unchanged in runtime.

The proposed approach can be extended in several ways.
The method of conditioning the decoder on the phonetic se-
quence of the speech segment paves the way for revisiting meth-
ods such as variational autoencoders in an end-to-end fashion.
Speech synthesis approaches may also benefit from the pro-
posed method, e.g., by training embedding extractors jointly
with TTS from scratch. Finally, there is large room for im-
provement in the architecture (e.g., by using a recurrent or atten-
tive decoder or deeper and wider encoder [33]), in the training
scheme (e.g., by varying the duration of encoding and decoding
segments), and in the way the existing speaker labels are used
in training (e.g., by extracting the two segments from different
utterances of the same speaker).
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